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SARLAC: A RELATIVISTIC ELECTRON BEAM CODE 

We have recently written a number of simulation codes to test various 

aspects of the resistive hose instability in high energy electron beams 

propagating in resistive plasmas. Most methods used previously for 

treating the instability were restricted to small instability amplitudes. 

These are considered to be of practical interest because large amplitude 

hose-like oscillations quickly destroy the integrity of the the beam, and 

because, under appropriate circumstances, the instability "saturates" in 

the linear regime. That is to say, the hose instability is convective in 

the beam frame, and therefore, at any given point in the beam may reach a 

maximum which is still small followed by a decay of the instability as the 

disturbance convects past. Near term experiments, however, are frequently 

more unstable than can be treated by linear models, so we have developed a 

particle simulation code which can follow the evolution of an instability 

1-3 A 
into the nonlinear regime  .  Similar codes have been written by Godfrey 

and Freeman . 

The nonlinear code has borrowed heavily from two of our previous 

fi        7 
codes, SIMMO and SIMM1 which are particle simulation codes for axi- 

symmetric beams and beams with small amplitude hose motions. The particle 

dynamics of those two codes are followed in Cartesian coordinates so the 

SARLAC code differs from these primarily in the calculation of the 

electromagnetic fields.  We have developed a fast iterative field solver 

which allows us to include a large number of Fourier modes in the azimuthal 

direction. 

The code employs many of the approximations found in most linearized 

8-10 
propagation models   .  The variables z and t are replaced by z and 

C - ct - z (the distance from the beam head), and all particles remain at 

constant T, since v  is assumed to be the velocity of light.  The frozen 

approximation is used in the field equations, and the same conductivity 

Manuscript approved October 7, 1987. 

IMJI-KT *' «.'. ^-. « -rviA H.-T ;»JV»-,-m,-i "■.ni^A »j- •_" «.- «.-: VT ><.-< M-n «.".».-. "L,-  «Jl*/ »Jt '^ «wl •-" K^"*^ •_! *.-'"t". K.^W^KWVUTVTfVüfVWVlf; T. >(".<, T, rfV <»' <■."•-. »r; V.'l 



g 
model used in the VIPER code is employed.  Beam dynamics are treated using 

standard particle simulation techniques.  Current densities, fields, and 

conductivity are calculated on a polar grid (u,9,C) with u = /r as the 

radial variable. The lay-down scheme for the particles is quadratic in the 

radial and azimuthal variables and nearest grid point in the axial 

variable. 

The ultra-relativistic approximations used in SARLAC lead to a code 

structure which is substantially different from "conventional" particle 

simulations.  Information can only flow in one direction; toward larger C> 

Also, since individual particles always remain at the same axial position 

within the beam, the simulation can treat one slice at a time, thus 

reducing the number of particles in the simulation at any one time to -10 . 

Each beam slice is propagated forward in z until the maximum propagation 

range, z   is reached.  At this point, particles are loaded into the next 

slice, and the process is repeated. The current density J, conductivity a, 

and potentials A and i>  from the previous slice must be read from disk. The 

axial step AC is variable, and the code has the option of subgridding the 

field and conductivity integrations on a finer axial mesh than is used for 

the particles. All diagnostics are done with post-processors. The 

7 8 
dimensionless units used in VIPER and SIMM1 are employed throughout ' . 

ELECTROMAGNETIC FIELDS 

The frozen approximation to Maxwell's equations is performed in a 

11 
gauge suggested by Lee  .  The equations are 

^(^ <!,) - -j = - Jb + a ^ (1) 
3C 

- vilf=- V^V)' <2) 
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with the frozen condition 

d    7 da   _   d<l>   _   d Ax 

and a B k    - $. 
Z 

The boundary conditions for a and <f) are 

air)  = 0 , c = o 

<t.(r) = 0 ,  C = 0 

«(O » 0 ,  r = R ^H/    '      max 

<KC) = 0 ,  r = R TVS/    '     max 

These conditions correspond to a beam propagating at the speed of light in 

a perfect conductor of radius R  . r max 
12 

The equations are similar in form to the EMPULSE  equations with an 

2   2 additional term 9 «/3C in the first equation. A fully implicit method for 

13 solving these equations has been developed by Hui  .  That field solver 

Fourier analyzes the azimuthal dependence of all quantities into a series 

of modes exp(im0) and performs a full complex matrix inversion, which is 

extremely time consuming and thus impractical for long simulation studies. 

The major advance of the SARLAC code is the development of a field solver 

which does not require a complete matrix inversion.  The SARLAC field 

solver uses a predictor-corrector method which iterates about a solution 

obtained by assuming that the axi-symmetric (m = 0) conductivity dominates 
•t 

the solution.  The m = 0 mode of any positive definite function is always 

larger than any other single mode and in the case of beam generated 

conductivity which is generated all along the beam axis, this mode is large 

compared to the other modes even for large excursions of the beam from axi- 

symmetry, as long as the front of the beam is on the axis. 

Consider the first equa'ion, and write it in the form 

-Jade' 9 Jodc' 3« J- Ax , T (4) 
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Integrate this equation over  the interval  C    < C < C    ,   to obtain 
n  -      -   Ti+1 

a11*1 . Ln - a""1 J— r,      .-««1 

where  the superscript n represents  the function evaluated at   C  .    The 

conductivity,   a,   is evaluated  in  the interval  (C ,C    •,)•     Rewrite Eq.   (5) 

as 

where 

and 

n+1      „,  n    n-1   T       . «        = F(« ,0,      ;Jb,a) 

+ ^(« + <(.)f(ff), (6) 

U -   [l - e-^ll/a2 
f(ff)

 = t      1     fl      1% (8) 
I1 " 2^  I1 " e        Jj 

Note  that 

f(a)   •♦    AC/cr for  a large 

f((j) ->    (AC)2 for  a small, 

Equation (2) is simply differenced to give 

„ ^n+1   n 

" 71   , AC " = - Vl-^Vi*)- (9) 

I 
w 



Note that we have omitted the superscripts from some of the a  and $  terms 

in Eqs. (6) and (9).  By choosing these terms at the nth or (n+l)th (or 

some combination of these levels), the differencing can be made explicit, 

or implicit to some formal accuracy.  Our experience has been that the 

algorithms for these equations are numerically unstable if they are 

explicitly differenced. An implicit differencing can eliminate the 

instability, but at the expense of a complicated matrix inversion due to 

the azimuthal coupling of a with the potentials.  To avoid this, we have 

chosen instead to to rewrite Eqs. (6) and (9) as 

«n+1 - vj(« + <j.) /0(^) = F(a
n,a"-

,;7,,0) 

+ vj(« + *) [/(0) -/oW>)] (10) 

and 

9 «n+1 _ /7n 

- \ —äT^ + V(ffov,,,) = - V(tT - W'     (11) 

where 

/o (") = ^T J0' / imd 0.^0 = -^: f ff (0) t/0 (12) 

Equations (10) and (11) are formally the same as Eqs. (6) and (9). 

However, since a does not vary in azimuth, the left-hand sides of these 

equations can be evaluated at the upper level without involving convolution 

sums, which leads to a tri-diagonal form for <£   and «j)  .  The right-hand 

sides can be evaluated explicitly since the functions are known. The 

simplest differencing scheme leads to a first order algorithm.  Ue have 

chosen a predictor-corrector method which is accurate to second order and 

quite stable.  For the sake of brevity, we will not go into the details of 

v>:vx:L>v.<.ivvVAr/fu7yavyr>A>7>/>7>7/^^^ 



the differencing, but they are easily reproduced. We solve the equations 

In the Fourier transformed space (u,m,C) always keeping the right-hand 

sides explicit. The right-hand sides, then, can be evaluated in (u,0,C) 

thus avoiding convolution sums on the right-hand sides as well.  The method 

of adding and subtracting averaged terms to gain stability without full 

14 
matrix inversions is similar to that used by Harned  for a different set 

of equations. 

NUMERICAL ISSUES 

In SARLAC, the number of modes N^ and radial mesh size Au remain fixed 

1/2 
throughout a run. Typically, N0 = 16 or 32, and Au = 0,125 a ' , where 

a is a characteristic initial beam radius. The axial grid spacing AC is 
o 

specified for each slice at the beginning of the run.  In general, AC is 

allowed to increase with C since (at least in the linear regime) the C- 

2  2 
variation is characterized by the dipole decay length, ncT(r=0)a /2c , 

which usually increases monotonically throughout the pulse.  However, field 

solver tests have shown that the axial step size must often be reduced when 

the beam displacement is large. This is accomplished by subgridding the 

field and conductivity integrations.  In most cases, AC is chosen to be 

small enough that subgridding is rarely involved. 

The beam current density J, is intrinsically noisy because of the 

statistical fluctuations arising from the small number of particles in each 

u-9 grid cell. This is particularly troublesome near u = 0.  Increasing 

the number of simulation particles per slice reduces noise problems but is 

computationally expensive.  Other methods which we have employed include 

accumulating current densities on a coarser radial mesh than is used for 

the field solver and interpolating, averaging over the first few radial 

grid points, and using an azimuthal Entering technique near the origin. 
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Originally, we assigned random initial values of 0 to the particles but 

found that this procedure resulted in large initial noise levels for the 

hose instability and in substantial drifts in the beam head. The noise 

effects are reduced by loading the particles in pairs on opposite sides of 

the beam. If the velocities are also loaded symmetrically, the m = 1 

azimuthal mode is eliminated in the initial stages of propagation. A small 

specified perturbation can be added to all particles in a given beam slice 

to start the hose instability in a controlled manner.  Higher order Fourier 

modes can be suppressed by loading four or more particles with the 

appropriate symmetry. The elimination of higher order modes has not proven 

particularly useful since the nonlinear coupling of these modes is usually 

too weak to introduce significant hose growth. 

The scattering of beam electrons by the neutral gas is known to play an 

important role in the evolution of the beam.  SARLAC uses an algorithm 

originally developed by Chambers '  and modified by Hughes and Godfrey 

to provide a more accurate representation of the scattering process.  Each 

beam particle is periodically scattered through a randomly chosen angle 

whose characteristic magnitude is determined by the energy and the gas density, 

After an initial transient phase, the beam reaches a quasi-static 

equilibrium. The beam radius then expands slowly due to scattering.  If 

beam particles are loaded in pairs, a straightforward application of the 

scattering algorithm will eventually introduce significant noise and drifts 

at the beam head. These effects can be eliminated by scattering the 

particles in pairs. The random velocity Av. applied to a given particle at 

a given z step is balanced by adding -Av. to the particle with which it was 

originally paired. This technique has been highly successful in practice. 
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The simulation code is best suited for treating cases in which the hose 

displacement is a few times the nominal radius a . The coordinate system 

is chosen to have the finest resolution in both the radial and azimuthal 

directions near the origin. For extremely large beam oscillations, when 

the beam displacement reaches a substantial fraction of the wall radius, 

the accuracy of the simulation is reduced, and the field solver is 

sometimes subject to numerical instabilities. The field solver 

instabilities appear to be triggered by conditions in which the local 

conductivity centroid gets far enough off the coordinate system axis that 

the conductivity is not dominated by the m = 0 mode. Usually this 

conductivity is generated by avalanche due to strong, localized, electric 

fields; such fields can arise when the hose motion is quite nonlinear . 

Evidence for very strong electric fields associated with nonlinear hose 

motion has been seen in the ETA experiments  , so the strong fields may be 

physical (up to a point). Considerable effort has been made to make the 

field solver more robust, and with careful differencing we have had some 

success. We have also found that these problems can be mitigated by using 

small C, grids in regions where there are large hose amplitudes. Even so, 

we believe the code to be best suited for moderate hose oscillations. 
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NUMERICAL RESULTS 

We have run the code under a variety of conditions. We show here the 

results of two runs; one for small perturbations in which the hose stays in 

the linear regime, saturates and decays, and one with moderate initial 

perturbations for which the hose grows and becomes nonlinear. The 

parameters for both sets of runs are 

a = .5 cm, the beam radius, o 

I = 10 kA, the beam current. 

Y = 100,  the beam energy. 

C = 15 cm, the beam current rise length. 

a = 81 a , the outer radius of the simulation. w     o 

y    = y sin 211 ((C-C )/C )» the initial perturbation over the •'pert Jo vv  o  o 

range 

C < C < 1-5 C , C = 10 cm. x» o' o 

(Note, this perturbation is in the y direction.) 
_5 

For the first run we used a very small initial hose amplitude y =10 a oo 

which kept the hose oscillations linear over the length of the beam.  For 

thrs case, the hose instability grows and saturates as seen in Fig. 1. 

Figure 2 shows a comparison of the saturation amplitude at various 

distances from the beam head with the results of the linearized VIPER code, 

18 
which uses the multi-component model  to represent the particle dynamics 

approximately.  The oscillation frequency, growth rate, and saturation 
o 

amplitude agree quite well with the VIPER code . 

The parameters chosen for the second run were the same except for a 

_2 
much larger initial amplitude y =10 a , so that the hose oscillations 

would become nonlinear.  Figure 3 shows the growth of the hose through the 

x and y centroids of the beam. The dashed line is the y centroid which is 
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much larger than x because the perturbation is initialized in y. After the 

hose displacements reach the order of the beam radius, the frequency of the 

oscillation decreases. This is because the beam is spreading in radius and 

the wavelength of the oscillation scales as the radius. Figures 4-6 are 

beam particle plots at various distances of propagation.  We can see the 

development of the hose instability and the loss of the beam pinch as the 

instability becomes large. 
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Figure 1. Plot of the beam x and y centroids at C = 50 cm as a function of 

the beam propagation distance. The initial perturbation 

v = 10  so that saturation is reached while the hose 
•'o 

instability is in the linear regime. The dashed line is the 

y centroid and the solid line is the x centroid. The initial 

perturbation is chosen in the y directions. 
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Figure 2. Plot of the saturated hose amplitude as a function of the 

distance back from the point of the initial perturbation.  The 

SARLAC results are marked with *'s, while the VIPER results are 

marked with +'s. 
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Figure 3. Plot of the beam x and y centroids at C = 50 cm as a function of 

the beam propagation distance.  The initial perturbation is 

_2 
y = 10  so that the hose instability becomes nonlinear. When 
•'o 

the hose motion becomes large, the beam radius increases and the 

frequency of the oscillation decreases. Again, the dashed line 

is the y centroid and the solid line is the x centroid. 
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Figure 4. Plot of the beam particle positions at z = 0. The particles are 

loaded with a Bennett distribution. The beam current increases 

with increasing C but this is not indicated by increasing numbers 

of particles because the particles are weighted with the charge. 
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Figure 5. Plot of the beam particle positions at z = 360 cm. The beam head 

has begun to blow off and the hose perturbation has grown enough 

to be easily seen. 
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Figure 6. Plot of the beam particle positions at z = 600 cm. The hose 

perturbation has grown so large that the tail of the beam is 

completely disrupted. 
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